Finite-Element Electroacoustic Analysis and Taguchi Design of Piezoelectric Buzzers Based on the Vibration Absorber Model

نویسندگان

  • Mingsian R. Bai
  • Rong-Liang Chen
  • Chung-Yuan Chuang
  • Cheng-Sheng Yu
چکیده

Lumped parameter models of piezoelectric buzzers are established with finite element-based electroacoustic parameter identification procedures. The analysis starts with modeling the diaphragm structure by using finite element method (FEM). The FEM model is then converted into electro-mechanical two-ports to fit into the electro-mechanoacoustical (EMA) analogous circuit. Electrical impedance of the piezoelectric diaphragm is simulated using the model. An ‘added-mass’ method is developed to identify the lumped parameters. Electrical impedance and on-axis sound pressure level (SPL) of a piezoelectric buzzer (containing the diaphragm and case) can be simulated by solving the loop equations of the analogous circuits. On the basis of the model, optimal structural parameters and configurations for the buzzer can be found to maximize the sound pressure output, using the Taguchi method and constrained optimization. Simulation and experimental results showed that the performance has been significantly improved using the optimal design. Design guidelines for the piezoelectric buzzers are summarized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal design of resonant piezoelectric buzzer from a perspective of vibration-absorber theory.

In this paper, an optimization technique is presented for the design of piezoelectric buzzers. This design technique aims at finding the optimal configuration of the coupled cavity and diaphragm structure to maximize the sound pressure output. Instead of measuring the material constants of the piezoelectric ceramic and the metal diaphragm, an "added-mass method" is developed to estimate the equ...

متن کامل

Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers

Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...

متن کامل

Free Vibration Analysis of Functionally Graded Piezoelectric Material Beam by a Modified Mesh Free Method

A mesh-free method based on moving least squares approximation (MLS)  and weak form of governing equations including two dimensional equations of motion and Maxwell’s equation is used to analyze the free vibration of functionally graded piezoelectric material (FGPM) beams. Material properties in beam are determined using a power law distribution. Essential boundary conditions are imposed by the...

متن کامل

A finite element model for extension and shear modes of piezo-laminated beams based on von Karman's nonlinear displacement-strain relation

Piezoelectric actuators and sensors have been broadly used for design of smart structures over the last two decades. Different theoretical assumptions have been considered in order to model these structures by the researchers. In this paper, an enhanced piezolaminated sandwich beam finite element model is presented. The facing layers follow the Euler-Bernoulli assumption while the core layers a...

متن کامل

Free Vibration Analysis of a Six-degree-of-freedom Mass-spring System Suitable for Dynamic Vibration Absorbing of Space Frames

This study is concentrated on the natural frequencies and mode shapes of a simple three-member space frame coupled with a dynamic vibration absorber. The dynamic vibration absorber is modeled as a six-degree-of-freedom mass-spring system. For the first time, the free vibration of an elastic structure with a six-degree-of-freedom mass-spring system is found. Each member of the space frame has un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008